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Abstract

A genetic algorithm approach suitable for solving multi-objective optimization problems is described and
variations of a binning selection algorithm and a gene-space transformation procedure are included. The
genetic algorithm is suitable for finding pareto optimal solutions in search spaces that are defined by any
number of genes and that contain any number of local extrema. A new masking amay capability is included
allowing any gene or gene subset to be eliminated as decision variables from the design space. This
allows determination of the effect of a single gene or gene subset on the pareto optimal solution. Results
indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning
selection algerithms generally provide parets front guality enhancements and moederate convergence
efficiency improvements for most of the problems solved.

Nomenclature
F set of scalar objective functions
F” optimal set of F values
/ scalar objective function
r maximum value of 7
G” 7" GA generation (active file)
R integer ranking array
ISEED seed value used in the random number generator A(0,1)
ISELECT user-specified integer parameter controlling which selection algorithm is used
[TRAN user-specified integer parameter controlling the gene-space transformation option
N fixed number of chromosomes in each GA generation
N number of genes in each chromosome
Ny number of scalar objective functions
P user-specified vector with four elements that controls modification operator usage
2 user-specified parameter controliing probability that a specific gene will be modified using
perturbation mutation operator (0< g <1)
5o user-specified parameter controlling probability that a specific gene will be modified using
globai mutation operator (3< &, <)
R basis vector matrix with elements 7,
A0.1) random number generator that returns a random value between 0 and 1
u unitary transformation matrix with elements ¢, ,;
X7 /" gene from the /” chromosome and the 77 GA generation
X7 /7 chromosome from the /777 GA generation
nax, user-specified maximum fimit on the /" gene
Amin, é

user-specified minimum limit on the /7 gene
€

~ flart H
b user-specitied parameter controfling t




subscripts
i gene or decision variabie index
chromosome index

objective function index

N

superscripts
n GA generation or population index
g temporary chromosome values obtained after selection but before modification

Backaround

Numerical methods for optimizing the performance of engineering problems have been studied for many
years. Perhaps the most widely used general approach involves the computation of sensitivity gradients.
These methods—called gradient methods—have been utilized to produce optimal engineering
performance in a wide variety of different forms. The reliabiiity and success of gradient methods generally
requires a smooth design space and the existence of only a single global extremum or an initial guess
close enough to the global extremum that will ensure proper convergence.

In contrast to gradient-based methods, design space search methods such as genetic algorithms
(GA)—also referred to as evolutionary algorithms (EA)—offer an alternative approach with several
aftractive features. The basic idea associated with the GA approach is to search for optimal solutions
using an analogy to the theory of evolution. The problem to be optimized is parameterized into a set of
decision variables or genes. Each set of genes that fully defines one design is called an individual or a
chromosome. A set of chromosomes is called a population or a generation. Each complete design or
chromosome is evaluated using a “biological-like” fitness function that determines survivability of that
particular chromosome. For example, in aerospace applications, the genes may be a series of geometric
parameters associated with an asrospace vehicle that is to be optimized for payload delivered to orbit,
aerodynamic performance or structural weight. The fitness function takes as input all the geometric
parameters and returns a numerical value for the fitness—the size of the payload, the aerodynamic
performance or the structural weight.

During solution advance (or “evolution” using GA terminology) each chromosome is ranked according to
its fitness vector—one fitness value for each objective. The higher-ranking chromosomes are selected to
continue to the next generation while the lower-ranking chromosomes are not selected at all. The newly
selected chromosomes in the next generation are manipulated using various operators (combination,
crossover or mutation) to create the final set of chromosomes for the new generation. These
chromosomes are then evaluated for fitness and the process continues—iterating from generation to
generation—until a suitable level of convergence is obtained or until a specified number of generations

has been completed.

Constraints can easily be included in the GA optimization approach either by direct inclusion into the
objective function definition—a so-called penalty constraint—or, more commonly, by including one or
more constraints into the fitness function evaluation procedure. For example, if a design violates a
constraint, its fithess is set to zero, that is, it does not survive to the next generation. Because GA
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optimization is not a gradient-based optimization technigue, it does not need sensilivity derivatives. !t

theoretically works well in non-smooth design spaces containing several or perhaps many local extrema.

General GA detaiis including descriptions of basic genetic aigorithm concepts can be found in Goldberg,'
Davis,? and Beasley, et al** Additional useful studies, which survey recent activities in the area of GA
research including the presentation of model problems useful for evaiuating GA periormance are given in
Deb,® Van Veldhuizen and Lamont® and Jiméneaz, et al”?




A disadvantage of the GA approach is expense. In general the number of function evaluaticns required
for a GA optimization process to converge, exceeds the number of function evaluations required by a
finite-difference-based gradient optimization (see the results presented in Obayashi and Tsukahara® and
Bock®). This situation is offset, to an extent, by the ease with which GAs can be implemented in parallel or

distributed computing environments.

Despite being relatively new, genetic aigorithms have aiready been appiied in many applications over a
broad range of engineering fields. A brief survey of single discipiine apphcanons is presented in Holst
and Pulliam,'® and will not be discussed further in this report.

Other applications involving GA search methods have been made in the area of multi-objective or multi-
discipline optimization, that is, optimization problems in which two or more objectives are simuitaneously
and independently optimized. These methods, referred to as MOGA (muiti-objective genetic algorithm)
methods, are especially attractive because they offer the abiiity to directly compute so-called “pareto
optimal sets” in a single computation instead of the limited single design point traditionally provided by

other methods.

The pareto optimal set or pareto front, as it is commonly called, includes optimal solutions for each of the
individual objectives, as well as a range of tradeoff solutions in between, which are themselves optimal
solutions. Providing a range of solutions to a multi-objective optimization problem is a powerful approach
because it allows the designer to see the effect of decision variable variation on the design space in the
form of optimal tradeoffs. Thus, the designer can choose individual objective weighting factors after their
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in recognition of the importance of the MOGA approach, many theoretical developments have been
published in recent years. In particular, Van Veldhuizen and Lamont® and Zitzler, et al.'' present
reasonably complete surveys of MOGA methodology with a special emphasis on how to compare GA
performance from one algorithm variation to another. Other researchers, including Deb,® Deb, et al.,?
Van Veldhuizen,™ Lohn, et al." and Holst and Pulliam,"> have developed and/or utilize a suite of test
problems as a standard in evaluating MOGA convergence efficiency as well as the accuracy of the final
pareio front. A key aspect of pareto front development is diversity. Does a particular MOGA produce
good coverage over the entire pareto front or are some regions poorly resolved while other regions have
high levels of undesirable clustering? This issue is studied in Laumanns, et al."® and Deb, et al."”

Still other MOGA issues are associated with archive strategies. As the pareto front develops, many
solutions are found that lie on the pareto front that cannot be retained within the fixed population size of
many schemes. How to retain or archive this information for the benefit of the MOGA while maintaining
reasonable bounds on the archive file has been studied in Knowles and Crone.’®'® One last example of
MOGA research lies in the area of an interactive algorithm development. Parmee, et al.?° present a MOGA
approach that allows changes to be made in GA operators as well as in objective definitions as the MOGA

advances from generation to generation.

One area of MOGA research that is even more voluminous than the area of theoretical developments is
that associated with GA multi-objective applications. Examples of multi-objective optimization applications
include airfoil optimization by Marco, et al.* Naujoks, et al.,2 Quagliarella and Della Cioppa,® Vicini and
Quagliarella,® Hamalainen, et al.® and Epstein and Peigin,26 missile aerodynamic shape optimization by
Anderson, et al.,” and wing optimization by Anderson and Gebert,?® Sasaki, et al.,?® Oyama,® Obayashi,

etal.,* and Ng, et al.®

Additional MOGA examples in the area of turbomachinery optimization include rocket engine turbopump
design by Oyama and Licu® and compressor blade design by Benni® and Oyama and Liou.*® In some of

these examples the multiple objectives were obtained by considering two different aerodynamic design
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points. In others the multiple objectives involved different disciplines including aerodynamics, structures,
controls and/or electromagnetics.

One last area of GA research ihat bears mention is in the area of hybrid method

optimization in conjunction with ancther type of optimizer. This is an attractive area of research because
GA methods are particularly good at finding a global extrema, but not particularly good in converging the
optimal solution to tight levels of accuracy. Briefly, several examples where hybrid approaches have been
utilized include Rai® and Madavan¥ for single objective problems and Giotis, et al.,® Tursi,* Vicini and
Quagliarelia*® and Brown and Smith*' for muiti-objective probiems.

Various definitions and the multi-objective genetic algorithm used in the present study are described
next. Details associated with each of the operators, including selection, passthrough, random average
crossover, perturbation mutation and mutation are presented. MOGA effectiveness is then evaluated

using several three-dimensional aerodynamic shape optimization problems.

Problem Statement: Single Objective Optimization

A single-objective optimization problem can be stated as follows: Let / be a scalar function of A/
independent variables, x;, defined on some domain Q

£ = AX) = A, X, X)) (ta)

In this notation X is the vector of design space decision variables. The maximum value of 7, indicated by
£, is obtained by finding the values of X = X" such that'

f*:max{f}:f(x*):f(/\,’*,,..,/\//*ﬁ"...,x;/c) (1b)
The above maximization operation is subject to A/, conditions or constraints indicated by
cAX)<0 =12, N (1c)

The constraints placed on the decision variable vector X by Egs. (1¢) essentially serve to limit the design
space within Q for which the optimal solution is sought.

Problem Statement: Muiti-Objective Optimization

For optimization problems involving more than one objective, which are simuitaneously and
independently optimized, the situation is more difficult. This is because each objective must play a role in
determining the optimal solution. In the optimization process, conflicts might arise among the various
objective functicns, that is, the optimal values of each individual obiective, in general, will not occur for the
same decision variable vector, X. As a result, the “optimal solution” for a multi-objective optimization
problem is typically a range or a set of solutions, which represent tradeoffs in objective space.

To determine when one solution is better than another for multi-objective optimization problems the
concept of dominance is utilized.! A vector U=U(u, -, u,--,ty) is said to dominate another vector

V=V(y, v, -y ifandonly if ¢ > v, forall / and there exists at least one value of / such that ¢; > v;. A
vector defined on some domain Q that is not dominated by any other vector defined on Qis said to be
non-dominated on Q.

I For the purpose of simplifying the discussion of algorithmic details, maximization is generally assumed.
The logic for minirnizaticn is a straightforward modification and will not be discussed.

&



A muiti-objective optimization problem can be stated as follows: Let F be a set of A, scalar objective
functions, /%, each dependent upon the same decision variable vector, X, which is defined on some

design space Q

F = F(§(X), -, 4(X), -/, (X)) | (2a)

As above, the decision variable vector X consists of Aj; independent components. The multi-objective
optimization problem involves finding the set of X = X" that produces non-dorinated values for F=F" on
Q. This set of values F~ is called the pareto optimal set or the pareto front.

For each F the constraints

CX)<0 n=12,- Ny (2b)

must be satisfied. Existence of these constraints serves to limit or reduce the size of Q for which the
optimal solution is sought. A

Genetic_Algorithm

The genetic algorithm optimization procedure utilized to solve the muiti-objective optimization problem, as
described by Egs. (2), is now presented. ft is closely related to the MOGA optimization procedure
presented in Holst and Pulliam.™ As mentioned in the introduction, the general idea behind GA
optimization is to discretely describe the design space using a number of decision variables, x;. In GA
parlance these parameters are called genes, and the / subscript refers to the gene number. Each set of
genes that leads to the complete specification of an individual design, that is, each decision variabie
vector, X, is called a chromocsome and is indicated by

X7

X = X1

N

e K) (3)

G

where the / subscript, added to X, identifies the chromosome number. In addition, the / subscript has
been added to each gene, to indicate its chromosome membership. The 77 superscript has been added
to indicate the GA generation number, which is iteratively advanced as the solution converges. Thus, Xf is

the /™ chromosome for the /7" generation that consists of N genes.

For aerodynamic shape optimization problems, the design space genes are typically a series of geometric
parameters, for example, airfoil thickness and camber and/or wing sweep, twist and taper. For many GA
applications genes are computationally represented using bit strings and the operators used to
manipulate them are designed to accommodate bit string data. In the present approach, following the

arguments of Oyama,® Houck, et al.® and Michalewicz,* real-number encoding is used to represent all

genes.

The key reason for using real number encoding is that it has been shown to be more efficient in terms of
CPU time relative to binary encoded GAs.* In addition, real numbers are used for all genes in the present
implementation because the present engineering application invoives decision variabies that are best
described using real numbers, for example, the geometric parameters in aerodynamic shape optimization.
Thus, using real number encoding eliminates the need for binary-to-real number conversions.



Initialization

Once the design space has been defined in terms of a set of real-number genss, the next step is to form
an initial generation, G*, represented by
0 _ ry© 0 0
GY = (X ,...’x/,...’xNo) (4)

where A is the total number of chromosomes. Each gene within each chromosome is assigned an initial
numerical value using a process that randomly chooses numbers between fixed user-specified limits. For
example, the /" gene in an arbitrary chromosome is initialized using

X = 57(0»1)(Xmax,- - Xmin,) + Xmin, ()

where X, and X, arethe upperand lower fimits for the /" gene, respectively, and A(0,1) is a random

number generator that delivers an arbitrary numerical value between 0.0 and 1.0.

The random number generator used in the present study requires an integer input—a seed value. If the
integer is positive, the next number in the current random number sequence is returned. If the integer is
negative, the random number sequence is reset to a new sequence. Utilization of the same negative
seed value will always reset the random number generator to the same random sequence. Each new
solution begins by resetting the random number generator using a single call to A0,1) with a negative
seed value—ISEED. All other calls to A0,1) during that solution use a positive seed value. Thus, a
solution can be repeated by simnly using the same initial seed value or rerun to determine statistical
variation by using a different initial seed value.

Fitness evaluation

After a generation is established—either the initial generation or any succeeding generation in the
evolutionary process—fitness values, F/’-7, are computed for each chromosome using a suitable function

evaluation. This is analogous to the objective function evaluation in gradient methods and is represented
using

F7 =F(X?) (6)

For example, for a multi-discipline optimization (MDQO) problem involving the simultaneous maximization of
two separate and distinct objectives, £ and £, the fitness evaluation represented by Eq. (6) consists of

the following

£ =HX))
§=4X))

where, for example, the first function £ might be the aerodynamic drag of an aerospace vehicle
(constrained to fly at fixed lift) and the second function 4 might be the structural mass of the same vehicle.
Once all the genes in a specific chromosome have been specified, £ can be evaluated using a suitable
CFD solver to obtain the drag and £ can be evaluated using a suitable structural analysis routine to obtain
the structural mass. In this case, of course, the optimization problem would be one of minimization.




Ranking

The purpose of the ranking operation is to determine a set of integer values for the ranking amay, /4. One
integer value is required for each chromosome. !ne ranking algorithm is quite different for multi-objective
optimization problems relative to single-objective problems. As such, both situations will be discussed in

this section. The ranking array values—once determined—are then used in the GA selection process.

Singie Objective Optimization—The GA ranking aigorithm for single objective optimization problems is
quite simple. Whichever chromosome has the highest fitness is ranked number one (/7 =1), whichever
has the second highest fitness is ranked number two (/#=2), and so on. Thrs ranking algorithm, more

formally stated, is given by

ic=1 ]
H(<BYie=ic+1 =t Npp =1 N )
IR} = ic

where /and j are special counters that range over all A/, chromosomes in the current population or
generation level.

Multi-Objective Optimization—For multi-objective optimization problems the ranking procedure is more
complex and utilizes the concept of dominance, which was defined previously.

A chromosome with a fitness vector F that is not dominated by any other fitness vector within the design
space is said 10 be a non-dominated chromosome. The optimal solution set F* or pareto front inciudes all
solutions with fitness vectors that are non-dominated and that satisfy the constraints given by Egs. (2b).
The numerical approximation to the pareto front must involve a suitably complete set of discrete solutions
so as to describe the optimal values of each individual objective—these are the pareto front
endpoints—as well as the non-dominated tradeoff solutions in between the optimal values associated
with each of the individual objectives.

With the concept of dominance in hand the actual ranking process can now be presented. There are a
number of ranking procedures available for use in multi-objective optimization. The one used in the
present study is called Goldberg ranking.! After all of the fitness values have been determined, each
chromosome is checked for dominance. Those chromescmes that are non-dominated are given a number
one ranking (/A=1) and then temporarily removed from the current generation. The remaining
chromosomes that are non-dominated are given a number two ranking (/7=2) and then temporarily
removed. This process continues until each chromosome has an integer value for the ranking array, /7. In
general, with this approach, the number of different integer values contained within the ranking array will
be small, at least small in comparison fo A;, as many chromosomes will be ranked near the top with a value

of1,20r3.

The above procedure, by itself, represents a legitimate algorithm for the ranking operation. However,
there is a refinement that provides a considerable enhancement to MOGA convergence. Before
describing this refinement, two additional concepts must be defined—the active file and the accumulation

file.

The active file is simply a specific name used for the current generation of chromosomes, that is
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is the 7" generation active file for the GA iteration process. As the GA solution evoives, the active file is
always fixed in size at A, chromosomes. The first A, elements in the active file—for the present
implementation—aiways contain the chromosomes that posses the maximum fitness values for each of
the A/, objectives.

The accumulation file is the list of all non-dominated chromosomes that have been found from all
generations combined during the current MOGA iteration. As the MOGA solution evolves, the
accumulation file typically grows in size with more chromosomes being added after each new generation.
As new non-dominated chromosomes are added to the accumulation file, old chromosomes that lose their
dominance must be deleted, thus ensuring that the accumulation file contains nothing but number-one
ranked chromosomes. Because each chromosome stored in the /7" generation accumulation file is non-
dominated, it serves to define the parsto front or, at least, the 7" generation approximation to the pareto
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front. The use of an accumulation file makes sense only when A, 2 2.

The multi-objective ranking procedure described above utilizes only the chromosomes in the active file,
that is, each chromosome in the active file is ranked relative to the other chromosomes in the active file.
But this philosophy potentially wastes a plethora of information because not every number-one ranked
chromosome for muiti-objective optimization problems can be retained from one generation to the next in

the active file.

This is where the refinement in the ranking routine enters. Once each chromosome in the active file is
ranked using the standard routine, an additional test is performed to see if any number-one ranked
chromosomes in the active file are dominated by any of the chromosomes in the accumulation file. If this is
the case, then the ranking number associated with the newly ranked chromosome in the active file is
decremented by one. This ensures that the ranking routine produces number one rankings that are

number one in a global sense.
Selection

After the ranking array is established, with or without the accumulation file option, the GA algorithm passes
to the selection process to determine which chromosomes will continue on to the (77+ 1 generation and
which will not. In the present algorithm implementation, four different selection operators have been
coded: (1} a simple technique called greedy selection, (2) a traditional tournament selection algorithm, (3)
a bin selection algorithm based on the computation of arc-length along the pareto front and (4) a second
bin selection algorithm based on subdividing the design space into a matrix of boxes. The first two
selection algorithms can be used for one or more objectives; the fourth can be used for two or more
objectives, and the third inherently requires two objectives. The selection algorithm actually used is
controlled by a user-input parameter called ISLECT, which will be defined shortly.

Regardless of the selection algorithm chosen, the selection process picks established
chromosomes—either from the 7™ generation active file, G”, or from the accumulation file—and then
stores the results in a temporary holding array G’. The chromosomes stored in G’ are then used by the
subsequent modification operators to create G™*', which will be discussed shortly. For the present study,
results are computed using only the first, third and fourth selection algorithms, and thus, only these will be
described herein.




Greedy selection—This selection algorithm is quite simple. It selects chromosomes from the #"
generation active file, that is, from X7. It is implemented using the following

m=1
it (/A7 < /) then
X/, =X7
m=m+1 /=LA =LA,

o~
(]
~—

if(m> A Jstop
endif

where each selected chromosome X?, is placed in a temporary holding array indicated by
G’ =(X{, - X, Xfy)

Note how the highest ranked individuals in the /™ generation are selected multiple times, individuais with
average ranking are selected a small number of times and individuals with the lowest rankings are not
selected at all. This biasing toward individuals with the highest rankings is a key element in any GA. This
baseline variation of greedy selection is implemented by setting ISELECT =1.

Tournament selection—The tournament selection algorithm is quite simple and is used widely—one
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variation of another—in many GA optimization applications. The present variation s implemented as
follows. Using a random process, three chromosomes are chosen from the 7™ generation active file, that
is, from x," . The ranking array values, /A, are then compared. The chromosome with the highest ranke

array value is placed into a temporary holding array, G'. In case of ties the chromosome selected first is
chosen. Next, three new chromosomes are chosen from Xf , and their ranking array values are compared.
As before, the chromosome with the highest ranking is added to G’. This process continues until Al
chromosomes have been selected from Xf. At the conclusion of the tournament selection process,
some of the original chromosomes within X7 may not have been selected even once, while other

chromosomes may have been selected multiple times. This selection algorithm is implemented by setting
ISELECT = 2.

Bin_selection (version 1}—The first bin selection algorithm is different from greedy and tournament
selection, as implemented here, in two general ways. First, the bin selection algorithm chooses its
chromosomes from the accumulation file, not the active file. Second, the bin selection algorithm divides
the distance along the pareto front into A, equal segments or “bins™ using an arc-length computation
and then selects an equal number of chromosomes from each segment. This ensures an equal
distribution of selected points along the pareto front. The parameter A, is a user-controlled parameter
typically equal to 5 or 10.

More precisely, this bin selection algorithm {version 1) is implemented as follows:
(1) Initiate optimization using greedy seiection and proceed until the total number of points on the pareto

front equals or exceeds A, which is a user controlled parameter that is typically several times the value of
Nb/'n-

(2) The arc-length along the pareto front is computed then divided into A, equal arc-length segments or
bins. Each existing pareto front solution point is assigned to a bin according to its arc-length vaiue.




Depending upon the distribution of points along the pareto front, some bins may be heavily populated
and others lightly populated.

(3) The selection process randomiy chooses a chromosome from the accumuiation file keeping track of
which bin it was chosen from. When the number of chromosomes chosen from a particular bin equals A,

defined by
Navg =N/ Ny

further selections from this bin are blocked. The process continues until A/ chromosomes have been
selected. For situations when A/ is not evenly divisible by A, the value of A, is incremented by one.

Thus, certain bins may supply one more element to the next generation than other bins, but generally, the
distribution will be reasonably weii distributed across the entire pareto front. This baseline variation of the
bin selection algorithm (version 1) is implemented by setting ISELECT = -3.

This selection algorithm does not guarantee that the pareto front endpoints will be selected and carried
forward to the modification process or passed through to the next generation. Since endpoint retention
can be an attractive feature for selection, a variation of this selection algorithm that first selects the pareto
front endpoints and then proceeds with the standard selection algorithm is also available and is
implemented when ISELECT = 3. :

Since the present bin selection algorithm requires the computation of arc-length along the pareto front, it
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optimization problems with two cbiactives, that is, the pareto fronts must be 2 curve in
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two-dimensional space. Another bin selection option, which works for two or more objectives, is available,

and will be discussed nexi.

Bin selection (version 2)—The second bin selection algorithm is similar to the first in philosophy and has
virtually identical convergence properties, but differs in how the bins are constructed. i does not use an
arc-length computation along the pareto front. Instead, the design space is divided into a series of equally
sized boxes or bins, each with A/,-dimensions. This approach is applicable for any number of objectives

(greater than one) and thus is more general than the first bin selection algorithm.

More precisely, this bin selection algorithm (version 2} is implemented as follows:

(1) initiate the optimization using greedy selection and proceed until the total number of points on the
pareto front equals or exceeds A,,,—defined the same as in bin selection algorithm version 1.

{2) The design space bins are constructed next by subdividing eéch objective dimension in the design

space into M,,, equal segments—where M, is a user-controlled parameter. Thus, the design space is

divided into a total of (Mseg)NO bins. For example, when Mg, =5 and N, =2, the design space is divided

into 25 bins, each with the same rectangular shape.

(3) Each existing element on the pareto front, that is, each element in the accumulation file, is categorized
as to which bin it occupies. Many of the design space bins will be empty, because they lie beyond the
pareto front or because they occupy an interior portion of the design space. Some of the bins that contain
pareto front elements may have many entries—some may have few. This, of course, depends on how the
pareto front is populated and how the pareto front slices through the matrix of bins that have been
created. The number of bins that have at least a single entry is counted. That resulting value is then stored

in A,
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(4) The selection process randomly chooses a chromosome from the accumulation file keeping track of

which bin it was chosen from. When the number of chromosomes chosen from a particular bin equals
setections from this bin are blocked. The process continues

Y aYat
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N,,—defined the same as above—further selections from thi
until A, chromosomes have been selected. As above, for situations when A/ is not evenly divisible by
N, the value of AL, is incremented by one. Thus, certain bins may supply one more element to the
next generation than other bins, but generally, the distribution will be reasonably well distributed across
the entire pareto front. This baseline variation of the bin selection algorithm (version 2) is implemented by
setting {ISELECT = -4.

As with bin selection algorithm (version 1), this selection algorithm does not guarantee that the pareto
front endpoints will be selected and carried forward to the modification process or passed through to the
next generation. A varation of this algorithm that first seiects the pareio froni endpoinis and inen

proceeds with the baseiine selection algorithm is also available and is implemented when ISELECT = 4.

Modification Operators

P Vector—After the new chromosomes have been selected and placed in the temporary holding array,
G’, they must be modified using one of several modification operators to obtain the (7+ 1) generation of
chromosomes, G"*'. In the present implementation four modification operators are used—passthrough,
random average crossover, perturbation mutation and mutation. How many chromosomes are modified
with each operator is controlied by the 7 vector, which consists of four parameters— gz, 04, £z, Puy-

Each element of the # vector controls one modification operator. The value of each A vector element
ranges from 0 to 1.0, and, for consistency, the sum of all four elements must always egqual one. A 7 vector
equal to 0.1, 0.3, 0.3, 0.3, for example, will cause the first 10 percent of the chromosomes to be modified
using the passthrough operator, the next 30 percent to be modified using random average crossover, the
next 30 percent to be modified using perturbation mutation and the last 30 percent to be modified using
mutation. Thatis, pz=0.1, 4, =0.3, p»=0.3,and g, =0.3.

The passthrough operator is always performed first. After passthrough is complete, the implementation
order of the remaining operators is immaterial. Once all values of G"*' have been established, the
algorithm proceeds to fitness evaluation, ranking and onto succeeding generations until the optimization

is sufficiently converged.

Passthrough—The simplest modification operator used in the present GA is “passthrough.” As the name
implies, a certain number of chromosomes with the highest individual fitness values are simply “passed
through” to the next generation from G’ to G™*' without modification. The number of chromosomes that
are passed through to the next generation is controlled by the first parameter in the 2 vector, pg. The
passthrough operator is always performed on the first pzA, chromosomes in G’. Care must be taken
when choosing pg and A so that pzNV- > N,. If this is done and if a selection option which retains end

points is used, the chromosomes with the highest individual fitness values will always be passed through
to the next generation, thus guaranteeing that none of the individual maximum fitness values will ever

decrease during GA iteration.

Random average crossover—The next GA modification operator is called random average crossover and
is implemented by first selecting two random chromosomes X', and X/, from G’. Next, the two selected

chromosomes are combined on a gene-by-gene basis using the following formula:

11 ;
X/{]/“l:E(X/{/‘"‘%'X(/Q) /:1:21'”7/\/@ (10)

/
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where x/" corresponds to the /" gene in the /' chromosome associated with G™*' and /4 and x/

correspond to the /A" genes from the randomly chosen chromosomes ij and Xj—z. The number of

chromosomes modified using the random average crossover operator is determined by the parameter
Yy H p

p,—the second element in the # vector.

Perturbation mutation—The next GA modification operator is called perturbation mutation and is

each gene x,’/ in the selected chromosome involving a call to the random number generator A0,1). If the

returned random number is less than g the gene is modified using

X = x4 (Xax, = Xmin, A0, 1) - 0.5]8 (11)
where f is a user-specified tolerance that controls the size of the perturbation mutation, and g is a user-
specified control parameter that statistically controls the number of genes that are modified. For sensible
results the values of # and g must be between 0 and 1.0.

Because this operator can cause the value of a particular gene to exceed one of its constraints ( X,y oOf
Xnin,), Checks are required to prevent this. The number of chromosomes modified using the perturbation
mutation operator is determined by the parameter p,—the third element in the # vector.

Mutation—The last GA modification operator used in the present study is called mutation and is
implemented similarly to the perturbation mutation operator. First, a random chromosome Xj. is chosen

from G’. Next, a probability test is performed for each gene x,’/ in the selected chromosome involving a
call to the random number generator A(0,1). if the returned random number is less than n, the gene is
given a completely different value using

X/‘,/;ﬂ = (Xmax,- ~ Xhin; VA0, 1)+ Arnin, (12)
The parameter p, is a user-specified control parameter that statistically controls the number of genes that
are modified. For sensible results g must be between 0.0 and 1.0. The number of chromosomes

.....

modified using the mutation operator is determined by the parameter p,,—the fourth element in the ~
vector.

Gene-space transformation—An option for accelerating GA convergence for multi-objective optimization
problems involving a gene-space transformation is described next. This option, introduced in Ref. 15,
worked amazingly well for model problems with simple non-convoluted pareto fronts, but performed
poorly for model problems in which the pareto front was convoluted. Thus, it is of interest to see how the
gene-space transformation procedure will perform on a real-world problem in which the shape of the
pareto front—in gene space—is unknown.

The transformation algorithm is outlined as follows:
(1) Transform G’ using the gene-space transformation procedure.
(2) Perform modifications on the transformed chromosomes according to the user-input 7~ vector

values.
(3) Using the inverse of the original transformation the modified chromosomes are transformed back

to obtain G”.
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This gene-space transformation procedure, which can be viewed as a gene-space rotation of coordinates,

causes alinear coupling between each of the genes, and thus, affects how they are changed in the

modification process. In some cases the gene-space transformation procedure can significantly improve
far o

GA convergence. The transformation procedure, which theoretically works for any number of objectives,
will now be presented for the two-objective case, that is, for A, =2.

The idea behind the transformation procedure is to perform a rotation of coordinates in gene space using
an angle-preserving, iength-preserving orthogonal transformation. For this purpose a simplified version of
the Gram-Schmidt orthogonalization is used.*> The current set of /7" generation chromosomes (those that
have been newly selected and placed in the temporary holding array G’) can be written as

( X Ko o /\'14/\/:\'

. A4 |
Gl - -.-1' H
Appt XNg,NCJ

where each column is one of the chromosomes in the active file holiding array. It is this matrix that is to be
transformed using

UG =G” (13)

where U is a unitary matrix of rank Aj; that needs to be constructed and G” is the resuiting transformed
matrix. To construct U a set of basis vectors R needs to be established. The elements of R are defined by

b=

and
=l o e (14b)
/'/_(O if j#/ /=

The simple choices made for ;;; when s>2 serve to simplify the transformation matrix construction

/

without sacrificing overall generality.

As can be seen from Eq. (14a), the first coordinate direction in the new transformed coordinate system is
chosen to be parallel to X, — X,. As was mentioned earlier, the chromosome with the best fitness for the
first objective is always placed into X, and the chromosome with the best fitness for the second objective
is always placed into X, This convention is crucial for the success of the transformation algorithm, as it
causes the first transformation coordinate to be aligned with the pareto front endpoints. Keep in mind that
it is imperative that the first element of the A~ vector—the element that controls passthrough—is large
enough so that both X; and X, are always passed through to the next generation without modification. It

is also imperative for the selection algorithm ta have an endpoint retention option.

The unitary transformation matrix U is constructed column by column using

first column
7
& (15a)

‘\Q
i

13



second column

V.
Vi= g —lhyllyy, Up =1 (15b)
H'//{
n" column
-1 v
/
Vi=lip— EUH,/'U/,/ y Yip = M (15c¢)
/1l

=

Once G” is obtained the modification operators are applied the same as without transformation to obtain
G™'. The final G™" values are then obtained using an inverse transformation indicated by

UTén+1 elaa : (16)
Because U is a unitary matrix, its inverse is simply its transpose, and thus, it is easily constructed.

The gene space transformation option is controlled using the ITRAN control parameter. If ITRAN=0, no
gene space transformation in implemented. if ITRAN =1 the gene space transformation algorithm is

activated.

Geometry Parameterization

in aerodynamic shape opiimization the geomeiric parameterization is an important step that effectiveiy
connects the aerodynamic analysis routine to the optimization routine. An analytic parameterization
suitabie for wing and wing-fuselage configurations, typicai of the transonic flow regime, is now described.
Most of the parameters have common-sense definitions in which the name itself provides the definition,
for example, the wing leading edge radius of curvature, the wing leading edge sweep or the fuselage

length.

A Cartesian coordinate system ( x, y, ) is used for all configurations. The coordinate system origin is at the
wing root leading edge for isolated wing configurations and at the fuselage ncse for wing-fuselage
configurations. A plane of symmetry { )y = 0) is inherently assumed for all configurations. The x coordinate
is aligned with the freestream direction and is positive downstream, y is normal to the symmetry plane,
positive to the piiot’s right and Z is vertical, positive upward. Aii iength parameters are nondimensionalized
using the wing root chord, that is, the wing chord length where it intersects the plane of symmetry.

Isolated wing configurations—Isolated wing geometries are parameterized using A, airfoil defining
sections or stations, each using the geometric parameterization of Sobieczky.*® The first defining station is
always at the wing root and the last is always at the wing tip. Each defining airfoil section is characterized by
ten parameters. These parameters along with brief definitions are listed in Table 1. A graphical description
of these parameters is presented in Fig.1. All angles are measured in degrees. Once these parameters
are specified the airfoil coordinates ( z as a function of x) are determined using a polynomial of the form

6
7=y g.x""? (17)

=1

where the coefficients &, are computed from the ten airfoil defining parameters. Two applications of Eq.

17 are required for a complete airfoil specification—one for the upper surface coordinates and one for the
lower surface coordinates. Six simultaneous linear equations involving rle, xup, zup, zxxup, ate+ fte/2

and zte are soived for the upper surface coordinates, and six simuitaneous linear equations involving rie,
xio, zlo, zxxlo, ate - fie/2 and zte are solved for the lower surface coordinates. Because rle and zte are
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used for both surfaces, slope continuity at the leading edge and zero thickness at the trailing edge are
always maintained.
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Fig. 1 Airfoil parameterization used for each wing defining station (taken from
Sobieczky®®). Angles are measures in degrees. All lengths are nondimensionalized by
wing root chord.

Cnce the airfoil coordinates are constructed for each defining station, wing coordinates are constructed
using linear lofting and then modified according to a set of planform parameters. Seven planform
parameters are utilized at each airfoil defining station, producing a total of 7 x A, planform parameters.

These parameters are also listed in Table 1 along with brief definitions.

Certain geometric parameters have predetermined values or are not formerly used in the wing definition
process. For example, the root chord length is always unity, and the spanwise location for the root airfoil
defining station is always zero. The tip airfoil defining station values for the dihedrai angie and the ieading
edge sweep angle have no meaning, but are nevertheless included in the list for each wing
parameterization.

Table 1. Definitions for the airfoil section and wing planform parameters. A value for
each parameter is required at each of the A, wing defining stations, /=1---A,.

| Symbol .| Definition-=—- ‘Symbol: | Definition-
Airfoil section parameters Planform parameters
rle, Leading edge radius of curvature ¢ Airfoil chord length
Xup x-location of upper surface max 0y Dihedral angle (deg)
thickness
Zup, Upper surface max thickness A Leading edge sweep (deg)
ZXXup, | Upper surface curvature at x = xup ; Z Airfoil section thickness multiplier
xlo, x-location of lower surface max 9, Wing twist {deq)
thickness
zlo, Lower surface max thickness Xo./ Center of twist
zxxlo; | Lower surface curvature at x = xlo J ¥ Spanwise defining station location
zte ; Position of trailing edge above z=0
ote Angle between trailing edge bisector
and z=0 plane (deg)
Pe, Trailing edge included angle (deg)

Wing-fuselage configurations—Wings for wing-fuselage configurations are parameterized using the

a
procedure as described above. Thus, only the fuselage portion of the wing-fuselage parameterization will
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be discussed in this section. The first step is to define a base fuselage, which is analytically constructed in
three sections. The nose section is an ellipsoid of revolution. The main body section is a right circutar
cylinder that smoothly transitions into the nose section. And the boattail section is a sine curve of
revoiution smoothly connecting the main portion of the fuselage with a downstream sting. The sting—not
formally part of the fuselage—is a small-radius right circular cylinder that extends to the downstream
outflow boundary. A total of eight parameters—defined in Table 2—are required to specify this base
fuselage. Note: The y-location of the wing root leading edge is always assumed to be on the symmetry
plane. Thus, y, is inherently assumed to be zero and is only included for completeness.

Table 2. Base fuselage parameter definitions. All lengths are nondimensionalized by
airfoil root chord.

[ Symbol | Definition 57 oLl i
Xpg x-location of wing root leadlng edge

Vr y-location of wing root leading edge
Zr z-location of wing root leading edge
Xg Body length

Xy Length of ellipsoid nose

s Radius of cylindrical portion of fuselage
Xr Length of fuselage boattail

s Radius of fuselage sting

Modification of the base fuselage shape is achieved using a series of Hicks-Henne bump functions.*” A
total of &, bump functions are distributed axially with equal spacing along the x-direction for each of Ay

circumferential stations also distributed with equal spacing in the circumferential direction. This allows a
total of A, x M- decision variables that are used to produce incremental radius perturbations A/’s to the
base fuselage. Any position on the base fuselage, except the nose x=0 or tail x = xg, can be changed
using this approach. A sketch showing the definitions of these parameters, including one possible
arrangement of A/’s is shown in Fig. 2.

T T T T T T T
I Ar's ]
- A//‘\A\ —

A ARn R

i 1 - 1 1 1 1 1

Fig. 2 Sketch showing decision variable definitions for the fuselage parameterization.
For this arrangement there are three axial stations (A, =3) and four circumferential

stations (Ay-=4).

1

Masking array—Associated with each decision variable, that is, each gene, is an integer value—either one
or zero—stored in & masking array called mask. The masking aray is established at the beginning of the
optimization computation and tells the GA which parameters to modify in the optimization process—using
the crossover and mutation operators—and which to leave unmodified. For exampie, the mask values for
Gy Yu An, Oy, and y are always zero. These parameters, as described above, are carried along with
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each chromosome but are never used by the GA process. The masking array can also be used to fimit the

size of the design space. Only those genes with mask =1 are utilized in the search for optimal problem
obiectives.

Computed Results

Area Error Norm for Two-Objective Problems

In order to evaluate the accuracy and efficiency of an optimization algorithm it is important to have a proper
error norm to assess the level of convergence. For single objective problems a suitable error norm is the
simple arithmetic difference between the current “best fitness” and the exact answer. This, of course,
works well for model problems in which the exact answer is known. For applications in which the exact
answer in not known a prior, it can stili be empioyed as an a posteriori error computation.

For multi-objective optimization a workable error norm is more elusive since a range of solution
values—the so-called pareto front—is being sought. The topic of how to define easy-to-implement and
accurate error norms for comparing one pareto front approximation to another for the same problem is
discussed at length in Zitzler, et al.'" and Knowles and Corne.™® A suitable norm encompassing the optimal
values of each of the individual objectives is one possibility. However, such a norm would not take into
account the trade-off regions of the pareto front. Another possibility is the attainment surface approach of
Fonseca and Fleming.® In this approach a set of equally spaced sampling lines that intersect the full
breadth of the pareto front are used. Statistical measures of goodness can then be developed based

upen how many intersection points one parets front has that are superior to ancther pargto front.
In the present study the area between the current pareto front and the final pareto front—a numerically
comnut ~ nrre

computed approximation of the final pareto front—is used as the error norm to determine level of
convergence. As the size of this quantity goes to zero, the current solution approaches the final solution.

The area is computed numerically by dividing the region between the “exact” pareto front and the current
approximation into a series of triangles as shown in Fig. 3. The area error norm is the sum of each of the
individual triangular areas. Thus, an approximation o the exact pareto front that fails to match the final
solution in any location will produce a non-zero value for the area error norm.
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Fig. 3 Area error norm computaticnal process for a tweo-objective pareto front,
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Isolated wing results

aYateslall

The first computed result invol a two-objective optémiza*ion for an isolated wing flying in the transonic
speed regime— A4, =0.84. The two objectives—lift-to-drag ratio at fixed iift and the inverse of the
nondimensional structural mass—are simultaneously maximized by the previously presented MOGA
optimization procedure. THe aerodynamic lift-to-drag ratio is evaluated for each candidate design, that is,
for each chromosome, using the TOPS full potential solver®® by iterating on angle of attack to obtain the ;
lift-to-drag ratio at the specified value of lift— ¢, =0.45. The tolerance on the lift iteration is £1%, but in :

most cases the error is much less. In effect, this is drag minimization at fixed lift. :

).
3
w

g

The structural mass computation utilizes an equivalent box beam model similar to that used in Oyama.®
Given a set of loads from the aerodvnamics routine, the structures model computes the minimum-mass
box beam that will support that load with a factor of safety of two. Shear and bending are included in this
model but not torsion.

The design space parameterization for isolated wings with two defining stations, A, =2, as described
above, consists of 34 parameters. Airfcil defining station one is at the wing root and station two is at the
wing tip. Maximum and minimum constraint values for each of the geometric parameters, as well as
masking array values, are given in Table. 3. Except for wing twist, all planform geometric parameters have a
masking array value of zero, that is, they are not modified in the optimization process. Thus, a total of 22
genes are active within each chromosome for this optimization problem, that is, Az =22.

Table 3. Maximum and minimum gene constraints along with masking array values for [
the isolated wing optimization problem.

Parameter {max_ Imin” |mask ||Parameter {max | min |mask |
Defining airfoil section 1 - Defining airfoil section 2
rle, 002 fooo8 | 1- rle, 002 [0008 | 1
xup, | 045 |035 | 1 Xup, |045 [036 | 1
Zupy 007 {006 1 Zup, 007 | 006 1 i'
zxxup, |02 [-08 [ 1 zxxup, |02 |08 | 1 :
xlo, 045 035 1 xlo, 045 | 035 1
zlo, 006 [007 | 1 zlo, -0.06 [-007 | 1
zxxloy 08 {02 1 zxxlo, 08 | 02 1 :
zte, |00t |001 | 1 zte, |001 |001 | 1 3
ote, 80 |00 [ 1 ote, 80 |00 | 1 i
Pe, |50 |60 | 1 Pe, |150 |60 | 1 ' f
Planform defining station 1 Planform defining station 2
G 10 |10 0 c 05 | 05 0
0 00 |00 0 0 00 | 00 0
Aq 370 |370 0 A, 370 |370 | © '
4 10 |10 0 5 10 | 10 0
6, 30 |00 1 6, 00 |30 1
X 1 05 |os 0 Xy 05 | 05 0
JZ 00 |00 0 Vs 24 | 24 0

Resuilts from this multi-discipline optimization problem are presented in Figs. 4-9. For all computations in
'[hlS series of results A,=32, =0.1,4=0.2, 5, =02 and ~=(0.04,0.32,0.32,0.32). This P vector

resulted in two passthrough chromosomes and ten chromosomes in each of the three remaining
modification categories—random average crossover, perturbation mutation and mutation.
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Pareto front comparisons are presented in Figs. 4. Note that each comparison contains five curves that
correspond to different ISEED initialization values used in the random number generator. There is also a
“master” result plotted in each pant of Fig. 4 that is a concatenation of all pareto front data produced for this

ls. “ th
case—a total of twenty curves—with only the non-dominated poinis retained.
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Fig. 4 Pareto front variation for transonic wing optimization in which the lift-to-drag
ratio at fixed lift and the inverse of the structural mass are simultanecusly maximized.
Five solutions utilizing different seed values are plotted for each GA variation after
500 generations, A47,=084, (=045, AM,=32 A;=22, =01, n=02, =02 and

F={0.04,0.32,0.32,0.32).
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There are several interesting features to note in this series of pareto front comparisons:

First of all, the variation in leve! of convergence across the varicus ISEED values is guite striking, especiall
for the cases invoiving greedy selection without gene space transformation, ISELECT =1, {TRAN=
(Fig. 4a). For these cases, the optimal lift-to-drag ratio point on the pareto front converges consistently in
the number of generations allotted for this computation, regardless of the ISEED value, but the minimum

structural mass point does not converge consistently.

This situation is improved, somewhat, for the ISELECT =1, ITRAN=1 case (Fig. 4b) where the best
structural mass endpoint values are obtained. However, this latter set of curves suffers dramatically in the
middle portion of the parefo front where the two objectives form trade-offs with each other.

The best results for this multi-discipline isolated-wing optimization are realized when bin selection is
utilized, ISELECT = 3 (Figs. 4c and 4d). The pareto fronts for both sets of curves that utiiize bin selection
more closely approximate the master curve than their counterparts using greedy selection. The set of
curves in Fig. 4c—the ISELECT =3, ITRAN =0 case—are overall the best. Nevertheless, the minimum

structural mass point for this set of computations still experiences inconsistency in convergence.

Convergence history comparisons for each of the pareto front curves presented in Figs. 4 are presented
in Fig. 5. Computation of the pareto front error was achieved using the area error norm described above.
The master pareto front displayed in Figs. 4 was used as an approximation to the “exact” solution. In
addition, for each set of convergence history curves displayed in Figs. 5 there is an average convergence

history curve plotted (the dashed curve), which is computed by arithmetically averaging each point in the
AAAAAAAAAAA i dn&n £ If\

Note that occasionally the convergence history error increases with generation. This usually occurs early
in the convergence process when the pareto front is still crudely defined with a small number of discrete
points and is explained in the series of sketches shown in Figs. 6. Figure 6a shows a hypothetical two-
objective pareto front, both the exact curve and a crude approximation to it that might exist after the search
has proceeded for 77 generations. Figures 6b and 6¢c show two different scenarios for what the pareto

front might iook like after 7+ 1 generations.

in both scenarios a single new point has been added which neither dominates nor is dominated by any of
the previously existing points on the pareto front. In scenario 1 the new point'’s placement is less
advantageous than that of scenario 2. Nevertheless, both new points are possible outcomes of the
genetic algorithm search process. Despite the fact that scenario 1 represents an “enrichment” of the
pareto front, the area error norm actually increases in going from the " generation to the n+1%
generation. This is why the area error norm occasionally jumps—either up or down—during solution

evolution.

There is a moderately large amount of variance in each of the convergence history curves displayed in Fig.
5. This emphasizes the point that genetic algorithms are stochastically based. Comparison of results,
especially convergence efficiency results, must be made with the proper amount of statistical averaging in
place. Results from each MOGA variation demonstrate this conclusion.
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Fig. 5 Convergence efficiency comparisons for transonic wing optimization in which
the lift-to-drag ratio at fixed Ilift and the inverse of the structural mass are
simultaneously maximized. Five sclutions utilizing different seed values are plotted for
each GA variation, M_ =084, (, =045, AN,=32 AN;=22, =01, =02, 5 =02 and

F=(0.04,0.32,0.32,0.32).

The averaged convergence history efficiencies for each of the four MOGA variations studied herein are
presented on the same set of axes in Fig. 7. Note that the two variations that utilize bin selection are both
faster than their greedy selection counterparts, achieving more than an order of magnitude reduction in
the area error norm after 500 generations. The gene-space transformation variation produced mixed
results, being slightly faster when used with greedy selection and slightly slower when used with bin

selection.
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Fig. 6 Sketch of pareto front convergence history process showing two different
advancement scenarios.
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Fig. 7 Average convergence history curves for the four GA variations pioited in Figs. 4
and 5, M_=084, ( =045, AN,=32 MNy=22, fp=01, p=02, p=02 and
F=(0.04,0.32,0.32,0.32).

Computed results for the two-objective isolated-wing optimization problem taken from the endpoints of a
suitable ISELECT =3, ITRAN =0 pareto front are displayed in Figs. 8-10. Figure 8a shows the upper
surface Mach number contours for the minimum drag point (at fixed lift), and Fig. 8b shows the same view
for the minimum structural mass point. Note the extreme ‘suction pressure (high Mach number) upstream
of the shock wave in Fig. 8b. This is caused by a large amount of flow expansion on the forward part of the
wing and results in a much stronger shock wave than the solution depicted in Fig. 8a.

This situation can be viewed in a more quantitative way by looking at cross-sectional plots of the pressure
coefficient, which are displayed in Figs. 9 for three spanwise stations— y/6=0.21,0.51,0.78. In each plot
the pressure coefficient for the two pareto front endpoints—minimum drag and minimum structural
mass—are displayed. From this series of figures it can be seen that the minimum drag case (solid curves)
has a greatly reduced shock strength reiative to the minimum structural mass case (dashed curves).




tir
(8O
]

more area inbcard and iess outboard reiative to the minimum drag point. This ten €
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which the wmg lift acts. Ths in turn, reduces the wing root bending moment and aHows for a lighter
structure.
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Fig. 8 Upper surface Mach number contours for a transonic wing optimization in which
the drag at fixed lift and the structural mass are simultaneously minimized, ISELECT =3,
ITRAN =0, 1.=084, (=045, M.=32 WNz=22, (=01, p=02, p=02 and
~=(0.04,0.32,0.32,0.32).
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Another important attribute in this multi-discipline optimization problem is wing thickness—especially at
the wing root. Selected airfoil cross-sectional profiles are presented in Fig. 10 at y/£=0.0,0.48,0.98
{wing root, mid-span, wing tip). Profiles for both pareto front endpoints—minimum drag (solid curves) and
minimum structural mass (dashed curves)—are presented. Note that the vertical axis had been greatly
expanded to facilitate viewing of the results, and that each profile is displayed in rigged position with wing
twist included. For this set of computations the minimum-drag root-airfoil thickness is the minimum allowed
by the geometric constraints and the minimum-structural-mass rooct-airfoil thickness is the maximum
allowed. This is as expected. A reduced wing-root thickness helps reduce drag by reducing shock
strength and thus reduces wave drag. An increased wing-root thickness helps to reduce structural mass
by more efficiently supporting the wing root bending moment with a box beam that has increased depth.
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Fig. 10 Selected airfoil profiles in rigged positions—at y/b=0.0, 0.48 and 0.98—for the
transonic wing optimization problem of Fig. 8 showing differences between the two
pareto front endpoints, (note the expanded z/c scale), ISELECT=3, ITRAN=0,
M,=084, C, =045, N,=32 N;=22, B=0.1, =02, =02 and ~=(0.04,0.320.32,0.32).

Wing-fuselage resuilis

The next set of computed results involves a two-objective optimization for a wing-fuselage configuration
flying in the transonic flow regime— A4, =0.84. The two objectives—Ilift-to-drag ratio at fixed lift and the
configuration’s volume—are simultaneously maximized by the previously presented MOGA optimization
procedure. As before, the aerodynamic lift-to-drag ratio is evaluated for each candidate design, that is, for
each chromosome, using the TOPS full potential solver*® by iterating on angle of attack to obtain the lift-to-
drag ratio at the specified value of lift— C, =0.45.

The wing-fuselage volume computation utilizes a straightforward algorithm that divides the fuselage into a
series of cross-sections, computes the area of each cross-section using a simpile triangularization and
then computes the volume by integrating along the fuselage using trapezoid integration. The wing
volume is computed using a similar algorithm that is deactivated for those wing cross-sections that lie
inside the fuselage.

There are several reasons lift-to-drag ratio (at fixed lift) and wing-fuselage volume have been chosen as

the two objective functions for the present optimization problem. First of all there is a clear-cut conflict
between these two objectives. When the volume is maximized the lift-to-drag ratio suffers and vice versa.
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Thus, we have a classical engineering trade-off problem. How the MOGA performs on such a problem with
real-world objectives is the key aspect of this study, not the development of new aeronautical engineering

concepts.

In addition, the vehicie volume was chosen as an objective because it is an easy quantity to understand.
The direct computation of maximum volume is easy fo perform, thus providing a simple check for the
results obtained by the GA—at least for one endpoint on the pareto front. This problem is interesting in

r nt

that it is complicated by transonic-flow shock-wave-induced nonlinearities and by a large number of
decision variables that have large sensitivity variations.

The present wing-fuselage parameterization with two wing defining stations, A, =2, as described above,
consists of 66 parameters. Airfoil defining station one is at the wing root and station two is at the wing tip.
There are 24 Ar values used to define the fuselage—six equally-spaced axial stations, each with four
equally-spaced meridinal locations. The axial positions are located at x/c=0.711.43,2.14,2.86, 3.57,4.29
where the fuselage length is fixed at xz=50. The meridinal positions are located at
@ =-90°, - 30°, 30°,90° where ¢ =-90° corresponds to the fuselage keel line and ¢ = 90° corresponds

to the crown line.

Maximum and minimum constraint values for each of the geometric parameters, as well as masking array
values, are given in Table. 4. As can be seen, 43 of the 66 genes that make up each chromosome have
masking array values of one, and 23 have values of zero, that is, only 43 genes are actually modified
during the optimization process— A/; = 43. Note also that the max-min values associated with each of the
Ar values are not symmetric about zero. Along the keel and crown lines, for example, any Ar value
averaged between the max and min constraints, will be positive, and along the other meridinal stations
(along the fuselage side), the same averaging wil produce negative values. The max and min Ar
constraints were chosen in this way io keep the vertical extent of the fuselage from becoming too small. A
difficulty arises in the wing-fuselage line of intersection computation if the intersection line contacts the
symmetry plane. This results in fuselage designs that have depth-to-width ratios that generally exceed
unity—sometimes by a substantial amount.

The first wing-fuselage optimization results are presented in Figs. 11-14. For these results the freestream
Mach number is 0.84 and the lift coefficient is held fixed at 0.45. The tolerance on the lift iteration is +1%,
but in most cases the error is much less. The second binning selection algorithm with endpoint retention
is used, ISELECT =4, and the gene-space transformation procedure is turned off, ITRAN=0. Both of
the mutation probabiiities are fixed at 0.2 and ~=(0.04,0.32,0.32,0.32).

This optimization uses 34 chromosomes for each generation. The first element of the P vector is set such
that two passthrough chromosomes are chosen during each generation—always the pareto front
endpoints—the current minimum drag and the maximum volume chromesomes. Thus, 32 modified
chromosomes require new function evaluations during each generation. These function evaluation
computations are efficiently performed simultaneously on 32 processors of a parallel computer. The other
three elements of the F vector are set to evenly divide the remaining chromosomes between the three
remaining modification operators—random average crossover, perturbation mutation and mutation (at
least as close to even as possible).

Development of the paréto front as a function of generation number is displayed in Fig. 11. Note that the
maximum volume point on the pareto front, which occurs at a value of 1.42, converges quickly, achieving
96% of the theoretical maximum in as few as 50 generations, while the minimum drag point is slower in
convergence. This characteristic, displayed in Fig. 11 for one ISEED value, occurred for every ISEED
value utilized and is due to several factors. '
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Table 4. Maximum and minimum gene constraints along with masking array values for
the wi g-fuselag optlmlzatlon problem.

PnldllAltﬂGI miax | min Jjmask: "Para'neter"" max | min {mask jiParametar jmax- m:nT,mask
Defining airfoil section 1 Defining airfoil section 2 Fuselage perturbations
rie, 0014 0014 | 0 rle, 0014 [0014 | © Az, 005 002 1
XUpy 045 |035 1 XUp s 045 {035 1 Az, 005 [002] 1
Zup, 008 |00s 1 zZup, 008 005 1 Az, 005 (002§ 1
ZXXUP, 0.2 |-08 1 ZXXUp, 02 | -08 1 Az 005 |0.02 1
xl'o1 045 | 035 1 xlo, 045 [ 035 1 Ar, 005 |-002 | 1
zlo, 0.05 |008 | 1 zlo, -0.05 [-008 | 1 Ay 005 (002 ] 1
ZXXi04 08 | 02 1 ZXxio, 08 | 02 i AFp 002 005} i
zte, 00 |-00 0 zte, 00 | 00 0 A% 002 |05 1
ate, 80 | 00 1 ote, 80 | 00 1 An, 002 |-0.05 1
e, 100 {1001 0 Be, 100 [100 | © Alp 002 {005} 1
Planform defining station 1 Planform defining station 2 Ar, 00z |-005 | 1
G 10 |10 0 & 05 | 05 0 Ak o 002 |-005] 1
4 00 |00 0 4 00 | 00 0 Azg 002 [005) 1
e 370 {370 | © Ay 370 | 370 0 Az 3 002 [005 [ 1
4 10 | 10 0 b 10 | 10 0 Afg 002 |005| 1
6, 30 |00 1 G, 00 | -30 1 Al 002 005§ 1
X1 5 | 05 0 Xo.2 05 | 05 0 A 002 {005| 1
3z 00 o Vo 24 | 24 0 Afs 002 |005 | 1
Base fuselage parameters Ay 005 [002 | 1
Xg 15 | 15 e Xy 05 } 15 1 Asy 005 }002 | 1
Va 00 |00 0 5 035 | 035 0 AR, 005 |002] 1
Zg -0.15 1015 1 Xr 05 | 15 1 Az a 005 [002] 1
Xg 50 | 50 0 s 01 ] o1 0 Az 005 |-002 | 1
Al 005 |002 | 1

First of all, the volume objective depends on most of the genes in a simple way. For example, if one of the
Ar genes is increased, while all other genes are held fixed, the volume increases in a proportionate
amount throughout the range of that gene’s variation. This behavior exists no matter what value the other
genes possess. In addition, the maximum volume values of many genes in the present wing-fuselage
parameterization—certainly all of the fuselage Ar values—are at their upper constraint values. Finding an
optimum on the design space boundary seems to be easier than finding an optimum within the design

space interior.

The drag objective depends on the various genes in a more complex manner than that of vehicle volume
—especially for this wing-fuselage problem. Interrelated and simultaneous changes in several genes are
typically required in certain regions of the design space to achieve improvement in the drag objective. For
example, when Zg is changed the position of the wing-fuselage juncture changes. To achieve optimali
drag performance the wing-fuselage area ruling needs to be simultaneously adjusted, and this requires
coordinated changes in various elements of the A array. Which elements have to be changed and by
how much depends on the value of Z.
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The slow convergence of the drag pareto front endpoint for the present wing-fuselage probiem, relative
to the second objective, was not observed in the previous problem. In fact, the second objective for the
previous isolated-wing optimization problem—minimization of the structural mass—was slower than that of
the drag. There are two reasons for this apparent inconsistency. First of all, the complex interdependence
of the drag objective on wing placement and the ensuing fuselage area ruling issues do not arise in the
isolated-wing problem. Secondly, the dependence of the structural mass on the gene value distribution
for the isolated-wing problem is every bit as complicated as for the drag objective—perhaps more so.
That's because the structural mass depends on both the wing thickness distribution, especially near the
wing root, as well as the .wing pressure distribution—the latter quantity setting the wing’s center of

pressure and thus the moment arm for the wing root bending moment.
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Fig. 11 Pareto front convergence and solution structure for a wing-body two-point
optimization involving drag minimization and volume maximization both at constant lift,
C, =045, M, =084, ISELECT=4, ITRAN=0, A,=2, AN,=34, A;=43, pB=01, p=02,
£, =02 and P =(0.04,0.32,0.32,0.32). Wing sectional pressure distributions are presented
at three positions along the pareto front, A) maximum volume, B) intermediate, C)
minimum drag.

Also displayed in Fig. 11 are several airfoil pressure distributions for three different solutions
corresponding to three different locations along the pareto front, A) maximum volume, B) intermediate
and C) minimum drag. For each solution two airfoil pressure distributions are presented—the first inboard
near the wing-fuselage juncture ( y/b=0.2) and the second near mid-semi-span (y/56=10.6). The most
obvious feature from these results is the change in shock strength as the pareto front is traversed. The
maximum volume solution (A) contains strong shocks, both on the upper and lower surfaces of the wing,
while the minimum drag solution {C) contains mild shocks on only the wing’s upper surface.

Upper surface Mach number contours for each of the three soluiions presented in Fig. 11 are dispiayed in
Figs. 12. This series of figures shows the shock wave pattern variation on the upper surface of the wing-
fuselage configuration as the solution transitions from the maximum volume pareto front endpoint to the
minimum drag endpoint. For the maximum voiume endpoint there are strong shock waves, not only on the
wing, as seen in Fig. 11, but also on the fuselage near the nose and tail. The fuselage shock waves are
caused by the GA's selection of minimum values for the x,, and x, genes. These values maximize the
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and tail due 10 excessive over-

=

A) Max volume solution B) Intermediate solution C) Min drag solution

Fig. 12 Surface Mach number contours for the wing/body optimization problem
presented in Fig. 11 at three positions zlong the pareto front.

As the solution propagates along the pareto front, trading volu to obtain areduction in drag, the most
nofzccab‘e *r*ma! cnange 'S associ at wi ‘{h the fuse%age nos d tail fairings. By cheesing larger values
is d wi icing o e seen by

_ i Fi ing it .11, Further
reductions in drag are achieved via he com lex task of fus area ruling in the vicinity of the wing-
fuselage juncture. Such a result is observed by looking at th inimum drag solution in Fig. 12. More on

this, including a comparison of selected fuselage cross-sections will be presented subsequently.

Pressure distributions along the fuselage for the three solutions described in Fig. 11 are presented in
Figs. 13. Resuits are plotted along three fuselage meridinal stations—the keel fine (¢ =-90°), the side,

crown line (¢ =90°). Each of these sclutions invelves a high mounted wing, that is, the

\((,:‘ allu ine crown

MOuA optlmlzer has chosen a high mounted wing, regardless of the solution’s position along the pareto
front. More will be presented on this aspect subsequently. Because of this the side fuselage pressure

ibution (@ =0°) is plotted along a2 continuous meridinal line that lies below the wina for each of these
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A series of fuselage cross-sections are presented in Fig. 14 for the two-objective optimization problem
displayed in Fig. 11. For each cross-section there are two curves plotted. The solid curve corresponds to
the solution obtained at the minimum-drag pareto front endpoint, and the dashed curve corresponds to
the solution obtained at the maximum-volume pareto front endpoint. For this solution the wing root

leading edge is placed at (xg, ¥, Zz) =(1.5,0.0,0.15). Note that x5z =1.5 and y;=0.0 are values set at
the beginning of the computation and are held fixed, and that z; =0.15 is a value selected by the MOGA
optimization for this particular chromosome from the range, —0.15< z;<0.15 (see Table 4). The only

fuselage cross-section in Fig. 14 that actually intersects with the wing is the one at x/c=1.54. As seen
from Fig. 14, the fuselage cross-section is drawn before the wing intersection is included.

From this set of plots it is easy to see how the fuselage was area ruled in the vicinity of the wing-fuselage
juncture to ohtain the final amaunt of drag raduction. Volume is subtracted along the upper portion of the
fuselage near where the wing intersects, creating “pear-shaped” cross-sections in this fuselage location.
Every cross-section from the maximum volume solution contains more area than the corresponding
minimum drag cross-section. Each of the Ar values for the maximum volume solution is individually
maximized.
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Fig. 14 Selected fuselage cross-sections for the wing/fuselage optimization problem
of Fig. 11 showing differences between the two pareto front endpoints, (=045,
M_=0.84, ISELECT =4, ITRAN=0, A,=2, M, =34, AN;=43, =01, =02, =02 and
£ =(0.04,0.32,0.32,0.32).

Convergence efficiency for the two-objective wing-fuselage optimization problem just discussed—drag
minimization and volume maximization (both at fixed lift)—is presented in Figs. 15 and 16. Figure 15
shows the previously discussed area error norm plotted versus the number of function evaluations for
three different convergence histories involving three different population sizes—34, 66 and 130
chromosomes, respectively. Each curve is averaged over two ISEED values in an attempt to eliminate
some of the statistical variation. As can be seen each convergence history is nearly the same, indicating
that convergence is not a function of population size. This is compatible with the results presented in
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Holst and Pulliam®™ where a number of mode! problems were used to evaluate GA convergence for two-
objective optimization.

For this set of computations the number of processors used o periorm the function evaluations is equal
to the number of chromosomes requiring function evaluations. There are always two passthrough
chromosomes. The remaining chromosomes—those needing modification—are arbitrarity divided into
ihree groups of equal size—or as close to equal as possible. One group is modified using crossover, the
second using perturbation mutation and the third using globa! mutation. Since, twoc passthrough
chromosomes are utilized for each population, the number of processors required to perform function
evaluations is 32, 64 and 128, respectively. Using an increased number of chromosomes to define a
given population allows an increased number of processors to be used for the optimization problem and

thus, improves turn-around efficiency.

ence efficiency study

Figure 16 presents a comparison of the six pareto fronts computea from the convergence éeffic
presented in Fig. 15. These results are statistically similar to previous results presented in this section and
suggest that there is no significant effect of population size on the final solution. Care should be taken in
evaluating this conclusion, as the number of solutions needed to construct a proper statistical average has

not been utilized in this case due to computer time limitations.
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Fig. 15 Pareto front convergence history
comparisons for three population sizes,
each averaged over two ISEED values,
wing/fuselage optimization problem.
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Fig. 16 Pareto
three population sizes,

different ISEED values, wing/fuselage
optimization problem, £, =045, M, =0.84,
ISELECT =4, ITRAN=0, A,=2, A;=43,

B=01, 5=02, p,=02.

5 =02.

It is of interest to study how the individual genes vary along the pareto front. Selected genss from the
wing-fuselage optimization problem described in Fig. 11 are plotted along the pareto front in Figs. 17 and
18. In particular, they are plotted as a function of the pareto front’s first objective, lift-to-drag ratio. Each
gene is normalized and then plotted so that it varies from 0 to 1. For many of the curves the discrete points
are plotted along with a smoothed result. In some cases, where the number of curves on a single set of
axes is large, only the smoothed curve is plotted.
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Fig. 17 Normalized gene distributions along the pareto front from selected positions
within each chromosome, wing/fuselage optimization problem, ( =0.45, M, =0.84,
ISELECT =4, ITRAN=0, A,=2, A,=34, Ny =43, B=0.1, =02, pn=02,
P =(0.02,0.33,0.33,0.32).

The first general observation is that a significant amount of statistical variation exists in many of the genes
as they vary across the pareto front. Some genes wildly oscillate without any discernible pattern. The x-
location of the wing-tip lower-surface maximum thickness—xlo,, gene number 11—is such an example. Of
the 43 available genes, xlo, contains the most variation. This gene is plotted in Fig. 17a and is seen to
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favor the maximum value in its allowable range. Nevertheless, it taekes on many other values in a seemingly
haphazard fashion.

The reason for this behavior is straightforward. This gene has little impact on either objective being
optimized and thus has little impact on.the pareto front. Any value is generally acceptable at any location
along the pareto front. To test this observation several chromosomes were selected from the pareto front
for which xlo, was against one of its constraints. The value of xlo, within that chromosome was then moved
to the opposite constraint without changing any other gene value, and a new solution was computed. The
resulting design-space point moved little and was still a member of the pareto front. ideally, such a
parameter shouldn’t be utilized as a gene in the optimization process. In reality it is difficult to know a priori
which genes will behave in this way and which will not.

Other parameters pioﬁed in Fig. 17 inciude tnhe trailing eage angie al ihe wing oot 70), s
airfoil twist at the win 1] root and »p (Fig 1:7C), and the vertical wi i 0°iﬁon the nose [ongth and

the boattail length (Fig. 17d). Ali of these gene parameter
the pareto front.

bly controlled variations across
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Figure 18 presents the variation of each of the Ar parameters for the wing-fuselage optimization
problem—all 24 of them—across the pareto front. As already discussed, the Ar parameters are organized
into four meridinal stations, each with six longitudinally distributed values. Each meridinal station is plotted
on a separate set of axes in Fig. 18. Figures 18a, 18b, 18c and 18d show the Ar longitudinal variation
along ¢ = -90°, —30°, 30° and 90°, respectively.

As expected, all Ar values at the maximum volume endpoint on the pareto front lie at their maximum
constraint limits. Moving away from this endpoint, many of the A/ values decrease from their maximum
censtraint values and attain intermediate values. This is especially true for the Ar values along the ¢ = 30°

and ¢ =90° meridinal stations, where reductions in the various Ar values have been determined by the
MOGA optimizer to achieve optimal fuselage area ruling in the vicinity of the wing-fuselage juncture.

it is of interest to study the effect of wing placement on the overall wing-fuselage optimization problem. In
the cases presented above, the vertical wing position, z, is constrained to lie between —0.15 and 0.15,
while x5 and y, are fixed at 1.5 and 0.0, respectively. As aresult of the optimization, the value of z is
chosen 1o lie at or near its upper constraint value, Z =0.15, over the entire pareto front (see the variation
of gene 17 plotted along the pareto front in Fig. 17d). in other words, a high wing intersection is favored
by the optimization regardiess of position on the pareto front—at ieast in the context of the present
design space construction.

Figures 19 and 20 present results for a wing-fuselage optimization in which the wing intersection is
constrained to be low mounted, that is, the value of z; is constrained io be —-0.15. All other design space

attributes and constraints are the same as in the previous wing-fuselage computations. This is
implemented by setting the maximum constraint for z; equal to the minimum constraint, z; =-0.15, and
by setting the corresponding z; masking array value to zero. Thus, for this probiem, Ay =42, instead of
the previous value of 43. Note aiso that A =66 for this series of computations, that is, 84 processors

were used in the optimization.

Figure 19 displays two computed pareto fronts for the original wing-fuselage optimization problem and two
pareto fronts for the optimization that constrains the wing to be low-mounted. The two curves plotted for
each case correspond to two different ISEED values. As can be seen, the low motlnted wing results are
less efficient in the vicinity of the minimum-drag pareto front endpoint. The low-mounted case achieves
essentially the same level of drag, but only when vehicle volume is reduced. Note also that this effect is
large in comparison to the statistical variation that exists between the two JSEED computations from each
solution category. The effect of z- on the maximum volume pareto front endpoint is negligible.
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Fig. 18 Normalized gene distributions along the pareto front from the fuselage portion
of the parameterization, C =045, M, =084, I{SELECT =4, [TRAN=0, Ap=2, A =34,
N; =43, =01, p =02, p, =02, £=(0.02,0.330.330.32).

Also displayed in Fig. 19 are two circular symbols showing discrete chromosomes from each different
category of pareto front that most closely match a Lift-to-drag ratio of 13. Selected fuselage cross sections
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taken from these two points are compared in Fig. 20. A total of five longitudinal stations are presented with
x/c=0.49,1.54,2.59, 3.64,4.69. The solid curve corresponds to the original case in which the wing

vertical mounting position was allowed to float. (Although for this chromosome the value of 2z, that the

MOGA selected was 0.15—a high mounted wing). The dashed curve corresponds to the case in which
the wing was constrained to be low mounted. Despite being at the same L/D location on the pareto front,
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the two area rulings are quite different—quite different at each longitudinal station. Close examination
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34




shows how the MOGA modified the area ruling to account for the shifted wing mounting position, taking
volume from the upper fuselage for the high-mounted case and from the lower fuselage for the low
mounted case. it is also obvious that the fuselage associated with the low-mounted wing contains a
smaller amount of volume as is consistent with Fig. 19.
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Fig. 19 Pareto front comparisons for tweo different wing-fuselage optimization cases: a)
baseline in which wing position is allowed to float (-0.15<7;<0.15) and b) wing fixed in

the low-wing position (z; =-0.15). Each computation performed with two ISEED values,
¢, =045, M_ =084, ISELECT=4, ITRAN=0, Ap,=2, N,=66, ANz;=43/42, =01, p=02,
P =02, £=(0.020.330.33 0.32).
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Fig. 20 Selected fuselage cross-sections for the two wing/fuselage cptimization
problems of Fig. 19 showing differences between the two solutions at //0=13: a)
baseline in which wing position is aliowed to float (-0.15< 2;<0.15) and b) wing fixed in

the low-wing position (z;=-0.15), (, =045, M_=0.84, ISELECT =4, [TRAN=0, A, =2,
N,=66, M;=43/42, B=01, =02, 1, =02, P=(0.020.330.330.32).
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Conclusions

A multi-cbjective genetic algorithm (MOGA) optimization procedure, with several selection algorithm
options and a new gene-space iransformation procedure, has been presented. fi uses real-number
encoding to represent al design space decision variables as genes and populations of fixed size to go
from generation to generation. Four modification operators are utilized to advance from one generation to
the next. They include passthrough, random average crossover, perturbation mutation and mutation. The
standard output for this approach is a pareto front, which includes the best solutions from each objective,

as well as a range of optimal “tradeoff” solutions in between.

The MOGA optimization procedure was utilized to determine a number of multi-objective optimal solutions
for two problems. The first involved a transonic wing lift-to-drag maximization (drag minimization) coupled
with the simultaneous minimization of structural mass (all at fixed liff). The second invoived a transonic
wing-fuselage lift-to-drag maxirmization (drag minimization) coupied with the simuliansous maximization of
vehicle volume (all at fixed lift). In every case the GA optimization process was convergent. However, some
of the GA variations studied converged more rapidly than others. ‘

Of the two selection algorithms compared—greedy selection and bin selection—the latter produced the
most efficient convergence acress all of the problems studied. The gene-space transformation procedure
produced mixed results in the area of GA convergence efficiency. In some cases it was moderately faster,
for other cases moderately slower.

The new MOGA utilizes a masking arfay, which allows any gene (or set of genes) to be eliminated from the

optimization process as a modifiable decision variable. This allows determination of the effect of a single

gene (or gene subset) on the resultant pareto front.

A limited parallelization efficiency study was performed involving the use of 32 to 128 processors.
Population sizes ranging from 34 to 130 chromosomes were used. The present MOGA is essentially
embarrassingly parallel with regard to the number of chromosomes used for each generation, and the

number of chromosomes did not affect convergence efficiency of the MOGA scheme. Thus, the
turnaround time dramatically decreased with increasing number of processors.
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